On-Surface Synthesis Dependence on Instrumentation 


Scanning tunneling microscopy is considered a critical technique to help the project achieve success in terms of manipulating the precursor material and evaluating the final results. Scanning tunneling microscope makes it possible to directly prepare SEM micrographs and manipulate material at atomic scales. In so doing, these microscopes are equipped with a needle which is so fine to be equal to the size of a single atom. These microscopes could move on the surface so precisely and line by line to constantly measure any possible infractions between the surface understudy and render atomically accurate topography of surface structure. In the previous studies for achieving graphene nanoribbons, the material was used to be synthesized on a metallic substrate to suppress any possible electronic properties of nanoribbons.1


Mechanism of Action and Applicability

In terms of application, employing a metal substrate has shown to cause problems since it screens the properties. Therefore, the current approach which functions based on the coupling involves the removal of the system from the ultra-high vacuum conditions as well as placing it taking the advantage of a multi-step wet chemistry process. This basically requires etching the metal substrate away which in turn contradicts the accurate and favorable precision employed in creating the system. In this technique, oxide services are experimented in order to find a capable process to function on a non-metallic substrate with the ability to mimic strategies used on metal. In fact, on-surface synthesis makes it possible to obtain materials with high precision which basically comes true when molecular precursors are employed. Moreover, the reactions are necessarily programmed into a precursor where the temperature at which the reaction takes place is known. Another important advantage of these o-surface synthesis is the possibility of employing an extensive range of candidate materials as precursors with a high level of programmability.1 The exact application of reagents to decouple the system sustains an open-shell structure providing researchers with atomic-level precision in order to evaluate molecules with unique quantum properties. Particularly, it is favorable to find out graphene nanoribbons possess magnetic states called the quantum spin states. These conditions and magnetic properties provide a platform to investigate contractions of magnetic fields so that creating qubits for applications in quantum information size comes. 


Graphene Nanoribbons


Graphene nanoribbons as one-dimensional strips of graphene have emerged to be the promising candidates to make the future of electronic devices because of their magnetic properties and unique electronic behavior. The lateral size and the edge geometry of graphene nanoribbons give rise to the intriguing properties of the bandgap opening at the Dirac point. Up to this point, heteroatom doping of graphene nanoribbons has been carried out using boron, sulfuric and nitrogen at the edges and very little embedded in its structure. Among the different doping atoms, nitrogen has turned out to be an interesting agent to dope graphene nanoribbons because of its particular electro-accepting characteristics and the affinity to trigger robust ferromagnetism in graphene. In addition to the doping and chemical functionalization, the magnetic and electronic properties of graphene could be modified via creating some pores or defects. With the emergence of surface chemistry, the design and synthesis of doped carbon structures has made a lot of progress in techniques and methodology. Nitrogen-doped graphene ribbons (N-GNRs) with their porous structure exhibit practically desirable magnetic properties as the first-ever porous ladder-like graphene in which some certain carbon atoms in the crystal lattice are replaced with nitrogen atoms. 



To learn more about properties of silicene,


you can read our blog post here.


Contributions of Graphene's Properties 

Graphene is a rigid two-dimensional (2D) monolayer allotrope of carbon shaped like a hexagonal lattice with a thickness of as much as one carbon and a regular carbon-carbon bond distance of 0.142 nm. Compared to usual three-dimensional materials, graphene shows a rather different electronic structure. In the undoped graphene (pure and not modified), the Fermi level is situated at the connection points (known as Dirac points) of six double cones where its states density falls to zero. This causes the electrical conductivity to be pretty low. However, the Fermi level can be altered through applying an electric field in order to make the graphene electron-rich (n-doped) or porous (p-doped) based on the polarity of the electric field. The doped graphene has potentially higher electrical conductivity than copper at room temperature.2 As one of the most transparent materials, 97.7% of the incident light in the optical region can go through graphene while a normal glass used in windows has a transparency of 88 to 90 percent. Unlike other low-temperature 2D materials, graphene can retain its 2D properties at room temperature. It is 200 times as strong as steel and only one gram of that is enough to cover one football pitch and, in the meantime, it is among the most pliable materials. Like a rubber band, graphene can be stretched 20% while maintaining its electrical conductivity, whereas, silicon, which is widely used in electronics, can only be stretched only 1 percent of its length. This super-material is 10 times more conductive than copper. All in all, graphene is one of the very few materials which is transparent, conductive and flexible. 


Graphene Nanoribbons and Quantum Devices 


Recently, based on the efforts of an international research project, graphene nanoribbons have been synthesized as ultra-thin strips of carbon atoms growing on a titanium dioxide surface taking advantage of the atomic-level precision with perspective application to go beyond the barriers for designing nanostructures of carbon required for quantum Information science. Graphene could be employed in devices that fall into the nanoscopic scale when they are designed and nanoribbons. Nevertheless, the top-down synthetic method lacks any atomic-scale precision for preparing nanostructures to meet the standards of the current state-of-art applications. To get over the problem, a novel bottom-up technique has been developed to synthesize graphene nanoribbons at the atomic level so that they could be employed in some particular applications. 


Recent Posts

Future Communication with 5G Technology and Advanced Materials

Preserving History with the Power of Graphene
Future Communication with 5G Technology and Advanced Materials 5G technology opens the doors to a new era in communication with faster connection speeds, low late...

5G technology opens the doors to a new era in communication with faster connection speeds, low latency and wide coverage. This new generation technology enables important applications in many sectors...

​Graphite Applications on Anti-friction Coatings

Preserving History with the Power of Graphene
​Graphite Applications on Anti-friction Coatings Graphite is said to be known as one of the forms of carbon present in usually crystalline form. Thi...

Graphite is said to be known as one of the forms of carbon present in usually crystalline form. This too has various types and varieties in which graphite can be exhibited. However, recently it has c...

Cuprous (Copper) Oxide Properties and Applications

Preserving History with the Power of Graphene
Cuprous (Copper) Oxide Properties and Applications Cuprous oxide is also commonly known as copper oxide which is basically an inorganic compound compr...

Cuprous oxide is also commonly known as copper oxide which is basically an inorganic compound comprising of copper and oxygen. It has some excellent properties that enable it to surpass a lot of copp...

Cellulose Nanocrystals (CNC), Applications and Properties

Preserving History with the Power of Graphene
Cellulose Nanocrystals (CNC), Applications and Properties Cellulose is a very abundant polymer naturally available as it is a vital component present in vari...

Cellulose is a very abundant polymer naturally available as it is a vital component present in various plant cell walls. Besides, cellulose nanocrystals (CNC) also found in every other species all of...

Ketjen Black Applications As a Superconductor

Preserving History with the Power of Graphene
Ketjen Black Applications As a Superconductor Ketjen black is basically a conductive agent and conductive agents are usually used to make sure th...

Ketjen black is basically a conductive agent and conductive agents are usually used to make sure that the electrode possesses good charge and discharge performance. So ketjen black is responsible for...

​7 Reasons to Why Fullerenes are Growing Market

Preserving History with the Power of Graphene
​7 Reasons to Why Fullerenes are Growing Market Fullerene is a carbon allotrope consist of carbon atoms attached via single or double bonds.These m...

Fullerene is a carbon allotrope consist of carbon atoms attached via single or double bonds.These molecules have rich characteristics and potentially strong properties which enable them to work effec...

Molybdenum Disulfide (MoS2) Properties and Applications

Preserving History with the Power of Graphene
Molybdenum Disulfide (MoS2) Properties and Applications Molybdenum disulfide, also known as MoS2, is one of the best materials initially belonging to the t...

Molybdenum disulfide, also known as MoS2, is one of the best materials initially belonging to the transition metals.Its structure is unique hence all the properties it possesses are unique.  The buil...

From Graphene to the New Teflon

Preserving History with the Power of Graphene
From Graphene to the New Teflon Graphene is one of the most used materials in today's world and with all the exceptions that it is ...

Graphene is one of the most used materials in today's world and with all the exceptions that it is being used, it is being proven as one of the best materials for almost all industries.  Ever since i...

​Use of Graphene In The Textile Industry, Examples From The Market And Its Future

Preserving History with the Power of Graphene
​Use of Graphene In The Textile Industry, Examples From The Market And Its Future Graphene is known as a carbon allotrope in the industry as it comprises carbon atoms that are put t...

Graphene is known as a carbon allotrope in the industry as it comprises carbon atoms that are put together in the form of a lattice. Graphene is a highly necessary product in today's world as it is s...

IR Coating Technology and Applications

Preserving History with the Power of Graphene
IR Coating Technology and Applications IR coating technology is used for the optical coatings that perform their functions at a very large...

IR coating technology is used for the optical coatings that perform their functions at a very large scale. This includes UV wavelengths which are both short and long too. A lot of comprehensive studi...

Silicon Dioxide in Battery Applications

Preserving History with the Power of Graphene
Silicon Dioxide in Battery Applications Silicon dioxide is a promising material for next generation battery technologies because of its hig...

Silicon dioxide is a promising material for next generation battery technologies because of its high capacity and abundance. Especially Li-ion and Li-S batteries benefit from silicon dioxide and its ...

Properties of ​Ketjen Black as a Superconductor

Preserving History with the Power of Graphene
Properties of ​Ketjen Black as a Superconductor Ketjen black is basically a conductive agent and conductive agents are usually used to make sure th...

Ketjen black is basically a conductive agent and conductive agents are usually used to make sure that the electrode possesses good charge and discharge performance. So ketjen black is responsible for...

MoS2 Applications on Anti-friction Coatings

Preserving History with the Power of Graphene
MoS2 Applications on Anti-friction Coatings MoS2 is basically the chemical formula of molybdenum disulfide which is a compound known to be a tr...

MoS2 is basically the chemical formula of molybdenum disulfide which is a compound known to be a transition metal dichalcogenide having a blackish and silvery appearance. MoS2 is one of the categori...

​How to Sustainably Produce Nano Clays

Preserving History with the Power of Graphene
​How to Sustainably Produce Nano Clays Nanoclays, with their unique layered structure and nanometric size, are transforming industries by ...

Nanoclays, with their unique layered structure and nanometric size, are transforming industries by enhancing the performance of materials in packaging, automotive, and environmental engineering.  Th...

​10 Uses of Calcium Oxide in Daily Life

Preserving History with the Power of Graphene
​10 Uses of Calcium Oxide in Daily Life Calcium oxide is the chemical combination of calcium and oxygen subsequently forming a product that...

Calcium oxide is the chemical combination of calcium and oxygen subsequently forming a product that is rich in its characteristics and has an excellent set of properties that enable it to perform var...

​Cubic Boron Nitride Nanopowders: The New Diamond, Properties, and Applications

Preserving History with the Power of Graphene
​Cubic Boron Nitride Nanopowders: The New Diamond, Properties, and Applications Boron nitride is a chemical compound consisting of nitrogen and boron, having the chemical formula ...

Boron nitride is a chemical compound consisting of nitrogen and boron, having the chemical formula BN. It has various forms but the most common one is the cubic boron nitride form. It is actually a t...